

Firm Power across the MISO region

Tue Sep 27th, 2022

Marc Perez, Ph.D.

Firm Power in MISO

What differences from Switzerland?

- Different temporal profiles of variable renewables
- Different resources available
- Slightly different cost assumptions
- More opportunity for geographic dispersion

4 cost scenarios linked to date and technological progress

Each developed from latest NREL ATB¹:

- 2050, high and low technological development
- 2025, high and low technological development
- These 4 scenarios are run for 14 distinct geographic zones (10 LRZs, 3 Regions and MISO) pictured on previous page. Each region with it's own distinct: Load shape and Resource Characteristics.

			Utility PV				Wind				Storage						Gas							
		Ca	pEx \$/kW	Op	oex \$/kW-yr	Сар	Ex \$/kW	Орех	⟨\$/kW-yr	(\$/k\	CapEx Wh -pack	Cap	oEx \$/kW -BoS	Opex % total CapEx / yr	RT eff	СарЕ	Ex \$/kW		x fixed ‹W-yr		k variable /MWh		l cost ⁄IWh	
2025	High	\$	733		9	\$	1,311			\$				2.5%	85%	\$	872	\$	11	\$	5	\$	26	
	Low	\$	1,042	\$	13	\$	1,500	\$	42	\$	155	\$	552	2.5%	85%	\$	872	\$	11	\$	5	\$	39	
2050	High	\$	356	\$	4	\$	813	\$	24	\$	41	\$	133	2.5%	85%	\$	800	\$	11	\$	5	\$	29	
	Low	\$	899	\$	11	\$	1,294	\$	38	\$	112	\$	471	2.5%	85%	\$	800	\$	11	\$	5	\$	65	

^{07/24--&}gt;07/30

07/24-->07/30

07/24-->07/30

07/24-->07/30

2050 , High

-2025 , Low Technological Development, MISO LRZ 7, 100% PV + storage

174 GW $_{PV}$ 719 GWh Storage

Let's look at the impact of price

Storage energy component

Storage power component

PV

Wind

2050, high Technological Development, MISO LRZ 7, 100% ₽∀ + storage

174 GW_{PV} 719 GWh Storage

What about wind? Does the same hold true?

Wind + PV

2050, high Technological Development, MISO LRZ 7, 100% Wind + storage

73 GW_{Wind} 239 GWh Storage

What about a blend? Can we reduce costs further by hybridizing the resources?

MISO Central Region

2050, high Technological Development, MISO LRZ 7, 100% Wind + PV + storage

 $28~GW_{Wind}$, $42~GW_{PV}$, $419~GWh_{Storage}$

What about a larger region, how do the dynamics change here?

All of MISO

2050, high Technological Development, MISO Central Region, 100% Wind + PV + storage

4.6 c/kWh

52 GW_{Wind} , 243 GW_{PV} , 1.6 $TWh_{Storage}$

What about all of MISO?

2050, high Technological Development, All of MISO, 100% Wind + PV + storage

 $57 \, GW_{Wind}$, $511 \, GW_{PV}$, $2.7 \, TWh_{Storage}$

With 667 TWh of annual usage, this equates to \$28 Bn of annual expenditures

What if each LRZ optimized for themselves?

If each LRZ islanded themselves and optimized their resource blends, the electricity price would be:

weighted average cost

This equates to \$31 Bn/yr

The MISO-region interconnection will save ratepayers \$3 Bn/yr

The picture is similar if each MISO Region Islanded themselves

4.53 c/kWh

weighted average cost

This equates to \$30 Bn/yr

The MISO-region interconnection will save ratepayers \$2 Bn/yr

The larger the interconnection region, the lower the cost

Finally, what about adding 5% new-build gas as we did for MN?

Storage energy component

Storage power component

PV Wind

Implicit Storage

Key Takeaways for MISO study

- The Value of Implicit Storage Implicit Storage has similar value to each other region studied
- **The Value of Hybridizing Wind+PV** Wind + PV hybrid resourcing is significantly cheaper than either alone due to seasonal resource anticorrelations.
- Sensitivity to Cost Nominal technology costs change the LCOEs and relative costs change the technological mix:
 - Raise wind cost relative to PV cost, decrease optimal wind percentage
 - Raise storage cost relative to renewables, increase implicit storage use
 - Confidence and consensus surrounding cost will help solidify the planning process
- PV is Favored in 2050 across MISO despite wind resource Largely linked to >> predicted relative drop in price
- **95%** *Variable* **Renewables is significantly cheaper** Allowing 5% gas or some other dispatchable gen to perform some of the work otherwise done by storage (both implicit and real).
- The Value of MISO The larger the region we interconnect across, the lower the aggregate cost. On the whole this
 will save ratepayers billions annually.*

*Renewables were uniformly distributed and co-located with storage in this study: biasing the siting to higher-resource areas (wind in the N, PV in the S) will decrease the cost significantly but entails significant T&D expenditure

100% MISO Load

Thanks!

Firm Power across the MISO region

Tue Sep 27th, 2022

Marc Perez, Ph.D.

