

Vehicle Integrated PV: State-of-the-Art and Expected Benefits

Keiichi Komoto (Mizuho Research & Technologies, Ltd., Japan, IEA PVPS Task17 – Task Manager)

26 September 2022

Technology Collaboration Programme

E-mobility for achieving net-zero society

More than 20 countries have electrification targets or ICE bans for cars, and 8 countries plus the European Union have announced net-zero pledges

Ref.) IEA: Global EV Outlook 2021

Ref.) IEA: Net Zero by 2050, A Roadmap for the Global Energy Sector, 2021

Electricity's 'Color' is an issue

Life-cycle GHG emissions of average medium-size gasoline, diesel, and CNG ICEVs, PHEVs, BEVs, and FCEVs registered in China, Europe, India, and the United States

Engine and Electric Passenger Cars, October 2021

PVPS

3

Possible electricity supply for vehicles

5

IEA PVPS Task17: PV and Transport

• Goal

- Deploy PV usage in transport, which will contribute to reducing CO₂ emissions of the sector and enhancing PV market expansions
- Participating countries
 - Japan (Task manager), Australia, Austria, China, France (co-Task manager), Germany, Morocco, the Netherlands, Spain and Switzerland

Subtask 1: PV-Powered Vehicles *Clarify the benefits and requirements for PV-powered vehicles and components *Identify barriers and solutions to satisfy the requirements

Subtask 2: PV charging systems and PV power infrastructures *Propose directions for deployment of PV equipped charging stations and PV power infrastructures

Subtask 3: Potential contribution of PV in transport *Estimate the potential contribution of PV in transport and propose milestones

Subtask 4: Dissemination

*Accelerating communication and activities going ahead within stakeholders such as PV industry and transport industry

PVPS Task17 Subtask1 report, released in 2021

- State-of-the-Art and Expected
 Benefits of PV-Powered Vehicles
 - ISBN: 978-3-907281-15-4
 - Available at the IEA PVPS website:

https://iea-pvps.org/key-topics/state-ofthe-art-and-expected-benefits-of-pvpowered-vehicles/

https://iea-pvps.org/wpcontent/uploads/2021/07/IEA_PVPS_T1 7_State-of-theart-and-expectedbenefits-of-VIPV_report.pdf

Technology Collaboration Programme

State-of-the-Art and Expected Benefits of PV-Powered Vehicles 2021

Report IEA-PVPS T17-01 : 2021

PVPS Task17 Subtask1 report: Table of contents

1. Recent trends in PV-powered vehicles	1.1 Overview and state of the art of PV-powered vehicles				
	1.2 Overview and perspectives of the PV technologies for PV-powered vehicles				
	1.3 Summary				
2. Expected	2.1 Case study on PV-powered passenger cars in Japan: Expected CO ₂ reduction and charging frequency				
Benefits of PV-	2.2 Case study on PV-powered passenger cars in the Netherlands: Reduction of charging, cost and CO ₂ emission				
Powered Vehicles	2.3 Case study on PV-powered light commercial vehicles in Germany: Energy balance and expected CO ₂ reduction				
	2.4 Case study on PV-powered reefer trucks in Spain: Economic feasibility assessment				
	2.5 Case study on PV-powered truck trailers in the Netherlands: PV electricity production on trailers				
	2.6 Summary				
3. Vehicle Solar	3.1 Solar irradiance measurements in the Netherlands and Germany				
Irradiance	3.2 Solar irradiance measurements in Japan				
Measurements	3.3 Solar irradiance measurements in Switzerland				
	3.4 Solar irradiance measurements in Australia				
	3.5 Summary				
4. Next steps for realising PV-	4.1 Potential benefits of PV-powered vehicles				
	4.2 Preliminary discussions for standardisation of solar irradiation and module design				
powered vehicles	4.3 PV-powered vehicles in stationary mode and combination with possible infrastructures				
venicies	44 Conclusions and the way forward				

Trends in PV-powered vehicles development

The majority of PV-powered vehicles development is passenger car-based projects. Although expected available area for PV is small, the number of projects are rapidly increasing.

<Number of projects for various vehicle type, and development stages>

SdVd

<Average surface area for PV, and trends in passenger car-based PV-powered vehicles>

PV-powered passenger cars fully covered by solar cells

Sion from Sono Motors

Lightyear One

Test car – Multijunction PV on e-NV200

Test car – Multijunction PV on Prius

Case study on PV-powered passenger cars: Japan

PV-powered vehicle would produce environmental benefit and reduce charging frequency. In case of shorter driving distance, the PV-powered vehicle will be free from electricity charging at the station. However, 1 kW PV might be an excess capacity for the shortest driving distance.

<Main assumptions, and driving patterns used in the analysis>

<Expected environmental benefit (CO₂ reduction) and frequency of electricity charging of PV-powered vehicle, compared to conventional electric vehicle>

Case study on PV-powered passenger cars: the Netherlands

PV can supply energy for 3 000 – 4 100 km/year with an average of approximately 3 650km. The net CO_2 savings are between 192 and 255 kg- CO_2 /year/car across the profiles and vehicles. The cost savings are between 138 and 164 EUR/year/car, although not considering the cost for PV.

<Main assumptions>

PV capacity for vehicle	: 800 Wp	Annual horizontal irradiance	: 999,6 kWh/m ₂ /year
CO2 emission for PV	: 1 229,16 kg-CO ₂ /kW	Energy consumption: long-/mid-/sh	ort range: 158/170/167 Wh/km
Lifetime of vehicle	: 12 years	CO2 emission of grid charging	: 0,437 kg-CO ₂ /kWh
Electricity price (househo	old): 0,221 EUR/kWh		

<Driving distance (km), CO₂-saving (kg) and cost saving for charging (EUR), per year in Amsterdam>

210

a	S_lokm	S. 15km	S 20km	S 30km	5. 40km	I.S. SOKM	13k knuy	28k kms	
Long Range -	3350	4060	3882	3914	3899	3925	3473	3603	Lor
Mid Range -	3192	3780	3582	3590	3585	3592	3044	3113	М
Short Range	3294	4105	3939	3959	3979	3983	3264	3186	Sho

a.	5-10km	5.15km	S. 20km	S_30km	5. 40km	5_50km	13k knuy	Pok kmis
Long Range -	208	239	255	253	249	248	232	242
Mid Range -	216	240	247	254	249	249	226	226
Short Range	192	240	243	248	249	249	219	203

220

240

	S_10km	5.15km	S-20km	S-30km	5.90km	S. SOkm	Sk knyy	ok knys
ong Range -	142	164	164	164	164	164		161
Mid Range -	148	164	164	164	164	164	153	153
hort Range	138	160	163	164	164	164	149	142

Potential benefits of PV-powered passenger vehicles

Preliminary analysis on potential benefits of PV-powered passenger vehicles in Task17 participating countries.

<Total charging frequency and the relative reduction for the Simple 15km commute profile>

<Total electricity for driving divided into Grid and PV, and ratios of PV energy utilised>

<Net CO₂ savings per location for the Simple 15km commute driving profile>

< Net CO₂ savings per location for the Simple 15km commute driving profile >

Vehicle solar irradiance measurements

Solar irradiance measurement methods of TNO in the Netherlands, ISFH in Germany, University of Miyazaki in Japan, Bern University of Applied Sciences in Switzerland and UNSW in Australia.

TNO, Netherlands	ISFH, Germany	Univ. of Miyazaki, Japan	hiv. of Miyazaki, Japan Bern University of Applied Sciences, Switzerland	
Four horizontal pyranometers and PV module on roof rack	10 kHz irradiance measurements	Five direction pyranometers on roof rack	Five reference cells on two types of vehicles	Low-cost, autonomous irradiance sensor installed on a large number of vehicles
	Pyranometer SP Lite 2 from Kipp&Zonen with readout time < 500ns	Irradiance Irr _{se} Irradiance		
High fidelity irradiance measurements on horizontal plane. Partial and dynamic shading quantified	High fidelity irradiance measurements with high temporal accuracy	High fidelity irradiance measurements in all directions.	High fidelity irradiance measurements in all directions.	Crowdsourced irradiance and driving data under 'real-world' conditions, including parking behaviour

Discussions for standardisation of solar irradiation and module design

Several open-access works of literature have been published by testing engineers and scientists. <Potential standardisation items discussed <Discussions on curve correction factors> among scientists and testing engineers>

Rating test	Standard solar irradiation for standard testing condition				
	Testing facility				
	Curved surface				
	Robustness to partial shading				
	Robustness to dynamic shading				
Design	Standardization body				
qualification	Environmental test				
	Requirements for qualification				
Power	Simplified parameters				
Modeling	Modeling by rigorous calculation				
	Interaction to the string orientation				
	Outdoor measurement validation				
	Parameter measurement for modeling				
	Solar modeling for vehicle				
Energy Prediction	Difference between GHI and car-roof irradiance				
	Energy Nowcasting				
	Standard Smart Administration				

(Geometrical relation between the curved PV panel (curved detector) and light source (corresponding to the projected area))

PV-powered vehicles combined with charging infrastructure

PV-powered vehicles may present maximum PV benefits while park outside the shade of PV-powered charging station.

PV electricity produced and stored by PV-powered vehicles can be used as additional flow of electricity during all the V2X services. However, the real "additional value" earned from PV-powered vehicles is the real-time production during the dwell time, on public parking or at home.

<SWOT for PV charging stations>

Strengths

Weaknesses

- Energy is produced locally, avoiding grid transmission losses
- Reduced local grid overloading thanks to BESS if several EVs charge at the same time
- Identical operation as regular charging points from user perspective

Opportunities

- Ability to use surplus PV production to meet energy demand from other local loads
- Possibility to install gridindependent charging points if coupled with energy storage

- Increased initial cost, particularly if local storage is considered
- Requires upgrading existing electrical infrastructure with a bidirectional grid connection (V2G)
- Insufficient PV power for EV fast charging

Threats

- Lack of space for new charging stations from existing ones
- Difficulty to place PV panels in an urban environment

<PV canopy infrastructure and principle schemes for V2X>

Expected benefits of PV-powered vehicles

Feasible vehicle applications today

- Ultralight and highly efficient EVs
- Short range commuter vehicles
- Reefer trucks
- Light commercial vehicles
- PV-powered auxiliaries

PV cell/module technology state of the art and roadmap

- III-V multi-junction solar cells (30% efficiency, high efficiency moderate cost zone)
- Roof only requires 25% efficiency; including bonnet: 20%
- 500 Wp is a practical minimum = ~15 km/day
- Coloured VIPV will offer better aesthetics and is possible with little efficiency loss.
- Substrate modules with semiconductor material deposited directly onto metal or glass surfaces
- Perovskite cells: high efficiency, low cost and flexibility
- PV with longer lifetime, higher efficiencies, lower embedded emissions
- Need for tools and forecast methods, irradiance measurements

Expected benefits of PV-powered vehicles

Market outlook

- PV-powered vehicle is a promising and compelling solution for passenger and transport vehicles.
- Two types of vehicles stand out to benefit from VIPV: lightweight, efficient vehicles and short distance commuting vehicles. For the former, the additional range is quite important as the vehicle uses little energy per km; for the latter, solar can often provide all the electricity needed for the short commute.
- Electric transport is a new and promising market for PV deployment.
- Countries with less well developed grid and charging infrastructure seem interesting markets as well.

Practical benefits

- PV-powered vehicle can offer thousands of km/year of free "solar" range, and is the most direct way to drive using renewable energy.
- PV electricity generated on-board can be used directly or stored in the EV battery.
- On short commuting distances, PV-powered vehicle will increase the autonomy and independence of the driver (a decreased charging frequency of 10% to 60% compared to an EV).
- It makes it possible to use auxiliaries like the AC or ventilation without draining the battery

Environmental benefits

- Environmental benefits are most favorable in countries with a high carbon intensity electricity mix and high solar irradiance.
- Studies in Japan and the Netherlands: up to ~250 kg-CO₂ savings per year for passenger cars.
- For countries with a low carbon intensity electricity, PV-powered vehicle provides a REN solution for future mixes.
- There may be a potential for slightly smaller battery capacities in EVs equipped with PV on-board.

Economic benefits

- Study in the Netherlands: electricity gross savings of up to 164 EUR/year for passenger cars.
- PV generated electricity can be used in buildings (V2H/V2X), which will further increase the PV utilization ratio.
- Study in Spain: for reefer trucks, the best estimate of payback time: 3.62 years.
- Solar on top to power auxiliaries can save 5% of total diesel consumption/year.
- The business case is better for trucks that are charged at maximum volume.

Task17 workplan for 2022-2024

Subtask 1: Benefits and requirements for PV-powered vehicles

Activity 1.1: Overview and recognition of current status of PV-powered vehicles Activity 1.2: PV-powered passenger cars

- : Technical requirements for VIPV, Possible contributions and benefits of PV-powered passenger
- Activity 1.3: PV-powered light commercial vehicles
- Activity 1.4: PV-powered heavy duty vehicles

Subtask 2: PV-powered applications for electric systems and infrastructures

Activity 2.1: Overview and recognition of current status of PV-powered for EV charging infrastructure Activity 2.2: Requirements, barriers and solutions for PV-powered infrastructure for EV charging Activity 2.3: Possible new services associated with the PV-powered infrastructure for EVs charging (V2G, V2H)

Activity 2.4: Societal impact and social acceptance for PV-powered infrastructure for EVs charging and new services

Subtask 3: Potential contribution of PV in transport

Activity 3.1: Resilience by PV and vehicles

Activity 3.2: Business models and market diffusion of VIPV/ VAPV

Activity 3.3: Possible contributions and deployment scenarios for 'PV and Transport'

Subtask 4: Dissemination

-) Appearance:
 -) How much metal can be visible from the front

- > Technical Bottlenecks
 - What are the biggest bottlenecks to large scale rollout of VIPV?

TNO PROTOTYPING NEW TECHNOLOGY

- > TNO works on new technology to increase the coverage fraction
-) Maintain good aesthetics
-) Simpler manufacturing processes

Reference:

V. Rosca, N. Guillevin, L. Okel, B.K. Newman, Prefab approach to mass customization of integrated PV. SiliconPV 2022

Photovoltaic for Automotive Application - What are the limitations?

Validation of maximal Stress on the PV parts

Good fit between calculated ultimate tensile stress in c-Si and cell breakage observation

[1] O. H. Yeoh, "Some forms of the strain energy function for rubber," Rubber Chemistry and technology, vol. 66, no. 5, pp. 754–771, 1993.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Liten ^{CE2 tech}

SOLARIZATION KIT FOR VIPV: CONCEPT AND BENEFITS

- Solarization kit to retrofit electrical vehicles in after-sales
 - Range extension (800 km/year estimated in France)
 - Gain in comfort by decreasing the frequency of recharging (-14% expected)
 - Reduction in the vehicle's CO2 impact over its entire life
- Main technical challenges:
 - Interface directly to the vehicle's traction battery, with minimal energy losses between the PV module and the energy use
 - Ease and reversible installation
 - Compatibility with all types of electric vehicles
- Our field demonstrator:
 - Conformable and light-weight PV module of 145 Wp for any metallic body (patented)
 - Connection to battery with the stored energy is injected into the grid
 - System designed to be non-intrusive to the vehicle

First conclusion:

• Autonomy gain of 5 km/day on a sunny day demonstrated.

Global view of the Renault Zoe vehicle with the 145 Wp module produced and installed at INES.

Conformable and lightweight PV module of 145 Wp

23

Call for Presentations currently open until 16 October

Topics:

- PV Cell & Module Technology
 Vehicle Technology (with or without PV)
 System Energy Management
 Safety & Reliability
 Performance & Costs

- Production & ImplementationEnvironmental & Social Impact

www.pvinmotion-conference.com

www.iea-pvps.org

Thank you

Keiichi Komoto : keiichi.komoto@mizuho-rt.co.jp Manuela Sechilariu : manuela.sechilariu@utc.fr

