

Magasin X; Vasakronan - Uppsala/S; White Architects; https://www.besmartproject.eu/magasin-x

TASK 15 – "Enabling framework for the acceleration of BIPV" Subtask B: Cross-sectional Analysis of BIPV Installations

Gabriele C. Eder, Helen Rose Wilson, Nuria Martin Chivelet, Jennifer Adami, Markus Babin, Sune Thorsteinsson, Francesco Frontini, Pierluigi Bonomo, Karl Berger, Simon Boddaert, Rebecca Yang, Alessandra Scognamiglio, Rickard Nygren, Rolf Frischknecht, Antonia Galgiano, Roland Valckenborg, Lukas Gaisberger, Costa Kapsis and many more

ACTIVITIES

- B1: Definition of performance parameters/ indicators for the characterization of the electrical and building function of BIPV
- ✓ B2: Identification of representative BIPV installation scenarios; Categorization of BIPV applications*
- B3: Development of a multidimensional evaluation matrix
- ✓ B4: Identify a set of real BIPV installations with available data
- B5: Determination, analysis and assessment of the multifunctional performance and dissemination of best practice results

2

Ġ

General Information on

- installation site (geographical, climatic, orientation, inclination, shading);
- the PV Modules (datasheet): technical and constructive
- the BIPV installation (application and system category, sub-system, building type, total installed area and total nominal power of the BIPV building skin, fotos)

Performance Indicators (PI) in 4 categories (5-6 PIs for each category): numerical values;

- Energy-relevant
- economic
- environmental
- visual performance: evaluation via comparison: main objectives fulfilled: y/n
- ✓ defined possible range; information taken from real installations (min. and max. values);
- ✓ define scale $1 \rightarrow 5$ for each PI => rating
- ✓ calculate the rated PI for each category

✓ mean value in the middle, but all individual PIs displayed in a "spider" diagram

	parameter	unit	BIPV project
BIPV modules	module area	m ²	
	module length, width	m x m	
	weight	kg	
from technical	nominal power of module @STC (name plate)	Wp	
data sheet	PV technology; module efficiency	%	
	power density	W/m ²	
	T-coefficient Power	%/K	
	solar transmittance (g-value= T/R))	0 1	
	thermal transmittance (U-Value)	Wm ⁻² K ⁻¹	
	visible transmittance (for semi-transparent PV)	0 1	
Site information	average annual global radiation; horizontal	kWh/m²a	
	orientation (N=0°; E=90°; S=180°, W=270°)	0	
	inclination (0 = horizontal , 90°= facade)	0	
	annual solar radiation @ specific PV installation	kWh/m ²	
	shading on BIPV (annual mean)	%	
BIPV installation	application category	IEC 63092-1:2020: Category A-E	
	system category (topology) *	roof, façade or ext. integrated device	
	sub-system (morphology) *	e.g. curtain wall, window, roofing	
	building type		
	number of modules	Ν	
	total installed area BIPV building skin	m ²	
	total nominal power BIPV building skin	Wp	

DEFINITION OF PERFORMANCE INDICATORS

VPS

Ω

for the characterization of the electrical and building functions of BIPV

	Energy-relevant PIs	Economic PIs *	Environmental PIs	Visual PIs	
1	PV array energy yield (DC)	BIPV building element costs	Cumulative Energy Demand non-renewable	Recognizability	
2	Final system yield (AC)	Material replacement value	Climate Change	Colour	Evaluati
3	Area-specific AC final system yield (relative to total BIPV system area)	Effective levelized cost of electricity (eLCOE)	Resource Use, Minerals and Metals	Glare	on: objec
4	Performance Ratio (annual)	Standard LCOE	Particulate Matter	BIPV building in the urban environment	ctive fulfi
5	Self-sufficiency index	Effective net present value (eNPV)/costs	Acidification	BIPV system in the building	lled: y/n
6		Effective discounted payback period (eDPP)	Water use	PV module in the BIPV system	

here only the manufacturing phase is considered

ightarrow extension to the End-of-Life phase is discussed

EXAMPLE: ENERGY-RELEVANT PERFORMANCE INDICATORS

Energy-relevant PIs (refer to performance of installed BIPV system)* ra								
	Eporgy roloyant Bis	Unit	minimum	maximum	value / specific	Rating / Energy		
	Lifergy-relevant Fis	Unit	values value		BIPV project	relevant PIs		
1	PV array energy yield	kWh/kWp	0	1500	900	3		
2	AC final system yield	kWh/kWp	0	1350	815	3		
3	Area-specific AC final system yield *	kWh/m ²	0	300	210	4		
4	Performance Ratio (annual)	%	0	100	85	5		
5	self-sufficiency index	%	0	100	89	5		
	* relative to the total BIPV system area				Mean	4.0		

Proposed quantitative rating basis

	Energy-relevant Pis	Unit	rating 1	rating 2	rating 3	rating 4	rating 5
1	PV array energy yield (DC)	kWh/kWp	<550	550 - 825	825 - 1100	1100 - 1375	> 1375
2	AC final system yield	kWh/kWp	< 500	500 - 750	750 - 1000	1000 - 1250	> 1250
3	Area-specific AC final system yield *	kWh/m ²	<100	100 - 150	150 - 200	200 - 250	> 250
4	Performance Ratio (annual)	%	< 50	50-60	60-70	70-80	>80
5	self-sufficiency index	%	<5	5-20	20-50	50-80	>80
	General information on PV modules	Unit	rating 1	rating 2	rating 3	rating 4	rating 5
	module efficiency	%	<5	5-10.	10-15.	15-20	>20
	power densitiy	Wp/m2	<50	50 - 100	100 -150	150 - 200	>200

4

* Standard to refer to IEC 61724-1:2017

EXAMPLE: SPIDER DIAGRAM

ENVIRONMENTAL PERFORMANCE INDICATORS

Environmental Dia /avanable mana a Ci *

Environ	mental PIS / example mono c-SI *					rating 1-5	
	Environmental PIs	Unit	minimum	maximum	value / specific	Rating /	
1	Cumulative energy demand, non-renewable	MJ oil eg. / kWh	0.22	1.25	0.54	4	
2	Climate change GHG	g CO ₂ eq. / kWh	15	88	42.5	3	
3	Resource use, minerals+metals	mg Sb eq. / kWh	1.06	6.53	5.28	2	
4	Particulate matter	10 ⁻⁹ disease incidence/kWh	0.55	4.29	3.63	2	
5	Acidification	µmol H+ eq. /kWh	104	563	360	3	
6	Water use	m³ world eq. /kWh	2.2	13.9	7.49	3	
					Mean:	2.8	2.8
Propose	d quantitative rating basis						
	Environmental PIs	Unit	rating 1	rating 2	rating 3	rating 4	rating 5
1	Cumulative energy demand, non-renewable	MJ oil eq. / kWh	> 1.25	1,25 -0,91	0,91 - 0,56	0,56 - 0,22	< 0,22
2	Climate change GHG	g CO₂ eq. / kWh	> 88	88 - 63,7	63,7 - 39,3	39,9 - 15	< 15
3	Resource use, minerals+metals	mg Sb eq. / kWh	> 6.53	6,53 - 4,71	4,71 - 2,88	2,88 - 1,06	< 1,06
4	Particulate matter	10 ⁻⁹ disease incidence/kWh	> 4.29	4,29 - 3,04	3,04 - 1,80	1,80 - 0,55	< 0,55
5	Acidification	µmol H+ eq. /kWh	> 563	563 - 410	410 - 257	257 - 104	< 104
6	Water use	m ³ world eq. /kWh	> 13.9	13,9 - 10	10 - 6,1	6,1 - 2,2	< 2,2

* Report IEA-PVPS T12-03:2020; Task 12 methodology guidelines, 4th edition and Factsheet T12: https://iea-pvps.org/wp-content/uploads/2021/11/IEA-PVPS-Task12-LCA-PV-electricity__-Fact-Sheet.pdf

VISUAL PERFORMANCE INDICATORS

Visual PIs					rating 1-5
	Visual PIs	main objective	fulfilled y/n	value / specific	Rating / Visual
		-		BIPV project	PIS
1	Recognizability			partly fullfilled	3
2	Colour			2	5
3	Glare			3	4
4	BIPV building within the urban environment			Very good	5
5	BIPV system within the whole building			fullfilled	3
6	PV module within the BIPV System			well fullfilled	4
				Mean:	4.1

Proposed quantitative rating basis

PVPS

	Visual PIs	Main parameter	rating 1	rating 2	rating 3	rating 4	rating 5
1	Recognizability						
2	Colour	Spatial ∆C(A) and angular	ΔC(A) > 10 /*	∆C(A) < 10 /*	∆C(A) < 7 /*	∆C(A) < 4 /*	ΔC(A) < 1 /*
2	(validation needed);	ΔC(θ) colour uniformity	$\Delta C(\theta) > 10 /*$	ΔC(θ) < 10 /*	ΔC(θ) < 7 /*	ΔC(θ) < 4 /*	ΔC(θ) < 1 /*
3	Glare# (example calculations and validation	Glare risk	Risk for flash blindness	Risk for flash blindness	Risk for dis- comfort glare	Risk for dis- comfort glare	Risk for dis- comfort glare
	needed)		>10 h/a	1-10h /a	>10 h/ a	1-10 h/ a	<1 h / a
4	BIPV building in the urban environment						
5	BIPV system in the building						
6	PV module in the BIPV system						

Glare potential evaluation of structured PV glass based on gonioreflectometry; Markus Babin, Sune Thorsteinssonet all, IEEE PVPS 2022. + A Trans-Disciplinary Vocabulary for Assessing the Visual Performance of BIPV; Alessandra Scognamiglio; Sustainability 2021, 13, 5500. https://doi.org/10.3390/su13105500 10 *if desired

ECONOMIC PERFORMANCE INDICATORS

Economic Pls

rating 1-5

	Economic PIs	Unit	minimum values	maximum values	value / specific BIPV project	Rating / Economic PIs	
1	BIPV element costs	€/m²	130	1550	1000	3	
2	Material replacement value	€/m²	0	460	300	5	
3	Eff.levelized cost of Electricity (eLCOE)	€/kWh	(-0.5)	0.65	0.2	3	
4	Standard LCOE	€/kWh	-0.15	1.2	0,25	2	
5	Eff. Net Present Value (eNPV)	€/m²	(-9700)	13700	9000	4	4 3
6	Eff. Discounted Payback Period (eDPP)	а	1	30	5	4	2.5
					Mean	3.5	3.5

Proposed quantitative rating basis

	Economic Pls	Unit	rating 1	rating 2	rating 3	rating 4	rating 5
1	BIPV element costs	€/m²	> 1400	1400 -1100	1100 - 700	700 - 300	< 300
2	Material replacement value	€/m²	< (-1000)	(-1000)- (-600)	(-600)- 0	0 - 200	> 200
3	Effective levelized cost of Electricity (LCOE)	€/kWh	> 0.4	0.4 - 0.24	0.24 - 0	0 - (-0.3)	< (-0.3)
4	Standard LCOE		> 0.7	0.7 – 0.4	0.4 - 0.24	0.24 - 0	< 0
5	Effective Net Present Value (eNPV)	€/m²	< (-5000)	(-5000) - 0	0 - 5000	5000 - 10000	> 10000
6	Effective Discounted Payback Period (eDPP)	а	> 25	25 - 15	15 - 10	10 - 2	< 2

Apply matrix to real BIPV installations.... first test runs...

Presentation of the outcome:

SdVd

General Information as table 1.

2. Photos and drawings (for illustration)

Results of the performance evaluation in 4 3. categories given as spider diagrams (with mean rating)

Visual PIs / rating

BIPV buildin

the RIPV-System

BIPV system within the whole building

2.00

W/m kWb/e kwi

module length, widt weight

Sub-sustem (Moreholog

wer of module @STC (name p echnology; module effi

0.9 × 0.89

examples

Materi

GHG

Environmental Performanc

IDENTIFY REAL BIPV INSTALLATIONS WITH AVAILABLE DATA

- EURAC: multifamily dwelling unit (MDU); <u>https://www.energymatching.eu/demo-sites/italiandemo-site/</u>
- Fraunhofer ISE: Zentrum für höchsteffiziente Solarzellen (ZhS), Freiburg, DE
- Treeze: LCA of Buildings with active glass façades → for environmentals PIs <u>https://treeze.ch/fileadmin/user_upload/downloads/Pu</u> <u>blications/Case_Studies/Energy/674-LCA-Active-Glass-Facades-v2.1.pdf</u>
- Potentially: White architects: NCC headquarters and Magasin X; https://www.besmartproject.eu/

13

- Horizon 2020 EnergyMatching project
- Building retrofit (2021)
- BIPV parapets + BIPV window blocks + PV on roof
- SE and NW oriented surfaces
- Glass-glass (Onyx Solar) and composite (Tecnalia) modules with mono c-Si cells
- Click&go substructure (TULiPPS)
- Contact person: Jennifer Adami / eurac

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 768766. The information reflects only the project's view and the Commission is not responsible for any use that may be made of the information it contains

Example 1: Multi-family building - Campi Bisenzio, Florence, Italy

3 types of BIPV

	parameter	unit	BIPV I on windowblock	BIPV on parapet	PV or	n roof	
BIPV modules	module area	m ²	2.00	0.32	Composite 0.80	glass/glass 0.32	
from technical	module length, width	m x m	1.5 x 1.3	0.9 x 0.35	0.9 x 0.89	0.9 x 0.35	
data sheet	weight	kg	40.0	3.4	4.8	3.4	
	nominal power of module @STC (name plate)	Wp	318	47	92	47	
	PV technology; module efficiency	%	m-Si; 15.9	m-Si; 14.9	11.5	m-Si; 14.9	
	power density	W/m ²	159.2	149.2	114.9	149.2	
	T-coefficient Power	%/K		-0.	451		
Site information	average annual global radiation; horizontal	kWh/m²a		14	44		
	orientation (N=0°; E=90°; S=180°, W=270°)	0	109 and 289	109 and 289	109 and 289		
	inclination (0 = horizontal , 90°= facade)	0	90	90	6	6	
	annual solar radiation @ PV-installation	kWh/m ²		100)5.5		
	shading on BIPV (annual mean)	%	20	0	()	
BIPV installation	application category $(A - E)$	IEC 63092-1:2020	С	E			
	system category (topology)	roof, façade or external int. device	façade	External int. device	Not inte	egrated	
	sub-system (morphology)	e.g. curtain wall, window,	n wall, Rainscreen parapet				
	building type		Re	esidential, mult	dential, multi-family / Retrofit		
	number of modules	Ν	12 (SE)+ 27 (NW)	93 (SE)+ 102 (NW)	36 (composite 108 (glass-glas	e, SE facing) + ss, NW facing)	
	total installed area BIPV building skin	m ²		20	2,2		
	total nominal power BIPV building skin	Wp		300	000		

Note: data provided are all results of simulations done in the preliminary phases of the retrofit project process

Example 2: active Glass facades /Comparison of Environmental PIs

Life Cycle Assessment of Active Glass Façades, 2021

- Philippe Stolz¹, Luana Krebs¹, Rolf Frischknecht¹, Duglas Urena Hunziker², Urs Muntwyler²; ¹ treeze Ltd.; ² Bern University of Applied Sciences
- In this study, the environmental impacts of the active glass façades of five buildings and of the roof-integrated PV system of one building are analysed following a life cycle assessment approach

	Grosspeter Tower	Flumroc	Viridén	Solaris 416	Setz	Rudolf
Location	Grosspeterstrasse, Basel	Industriestrasse, Flums	Hofwiesen- / Rothstrasse, Zurich	Seestrasse, Zurich	Grabenweg, Möriken	Schubertstrasse, Thun
Building type	Commercial and office building	Office building	Residential building	Residential building	Residential building	Residential building
Construction year	2017	2014 (refurbishment)	2016 (refurbishment)	2017	2019	2013 (refurbishment)
Owner	PSP Real Estate AG	Flumroc AG	EcoRenova AG	huggenbergerfries Architekten AG	Immo Treier AG	Thomas Rudolf
Architect	Burckhardt + Partner AG	Viridén + Partner AG	Viridén + Partner AG	huggenbergerfries Architekten AG	Setz Architektur	Architektur Atelier Adrian Christen
PV system	façade-integrated (440 kWp) rooftop, mounted (100 kWp; not considered)	façade-integrated (57.3 kWp) rooftop, mounted (71.3 kWp; not considered)	façade-integrated (159 kWp) rooftop, mounted (30 kWp; not considered)	façade-integrated (46.5 kWp) rooftop-integrated (25.2 kWp)	façade-integrated (3.57 kWp) rooftop, mounted (<i>not</i> <i>considered</i>)	rooftop-integrated (34.6 kWp)
PV façade orientation	South, East, West, North	South-East, South- West, North-East	South, East, West, North	South, East, West, North	South	-
PV module manufacturer	NICE Solar Energy GmbH	Solar Frontier	Kioto Photovoltaics GmbH	LOF Solar	Kioto Photovoltaics GmbH	Meyer Burger
PV technology	CIGS	CIS	monocrystalline silicon	monocrystalline silicon	monocrystalline silicon	monocrystalline silicon PERC
PV module colour	screen printing at the edges (black)	-	satin finish and digital ceramic printing (grey)	digital ceramic printing (red-brown)	-	-
Substructure manufacturer	Sto AG / Hevron SA	gft Fassaden AG	gft Fassaden AG	gft Fassaden AG	BE Netz AG	Meyer Burger
LCIs displayed in	Tab. A. 1; Tab. B. 1	Tab. A. 2; Tab. B. 2	Tab. A. 2; Tab. B. 3	Tab. A. 2; Tab. B. 8	Tab. A. 7; Tab. B. 7	Tab. A. 6; Tab. B. 9

Tab. Z. 1 Overview of the environmental impacts of the active glass façades of the six selected buildings per m² façade construction (gross: all impacts attributed to electricity production; net: impacts of front glass and substructure attributed to the building, remaining impacts attributed to electricity production).

Impacts of PV, glass and substructure considered

			Overall	Cumu	
		unit	environmental impact	total	18
			UBP	kWh oil-eq	
Grosspeter Tower	gross	m ²	583'000	683	
	net	m ²	526'000	461	
Flumroc	gross	m ²	804'000	1'050	
	net	m ²	741'000	802	
Solaris	gross	m ²	445'000	1'150	
	net	m ²	357'000	807	Gr
Viridén	gross	m ²	409'000	1'080	
	net	m ²	344'000	824	Flu
Setz	gross	m²	611'000	1'420	- -
	net	m ²	526'000	1'050	So
Rudolf <mark>r00</mark> f	gross	m ²	256'000	693	- -
	net	m ²	212'000	551	Vi

(German: Umweltbelastungspunkte)

UBP eco-points

Tab. Z. 2 Overview of the gross environmental impacts of 1 kWh electricity caused by the active glass façades of the six buildings (gross: all impacts attributed to electricity production; net: impacts of front glass and substructure attributed to the building, remaining impacts attributed to electricity production).

							· · · · · · · · · · · · · · · · · · ·
		unit	Overall	Cum	Greenhouse gas		
			environmental impact	total	non-renewable	renewable	emissions
			UBP	kWh oil-eq	kWh oil-eq	kWh oil-eq	kg CO ₂ -eq
Grosspeter Tower	gross	kWh	553	1.71	0.583	1.13	0.136
	net	kWh	499	1.50	0.402	1.10	0.093
Flumroc gro	gross	kWh	304	1.46	0.354	1.11	0.082
	net	kWh	280	1.37	0.273	1.10	0.063
Solaris gro	gross	kWh	347	1.97	0.815	1.15	0.226
	net	kWh	280	1.70	0.579	1.12	0.169
Viridén gro	gross	kWh	485	2.34	1.16	1.18	0.278
	net	kWh	408	2.04	0.900	1.14	0.215
Setz	gross	kWh	211	1.55	0.430	1.12	0.107
	net	kWh	182	1.43	0.324	1.10	0.083
Rudolf roof	gross	kWh	65.6	1.24	0.147	1.09	0.039
	net	kWh	55.0	1.20	0.120	1.08	0.032

Active glass façade area: 4800 m² power output: 440 kWp annual electricity yield of 170,000 kWh/a yield of 386.4 kWh/kWp. frameless CIS glass-glass PV modules weight of the module: 18.5 kg/m²

	parameter	unit	BIPV I
BIPV modules	module area	m ²	0.72
from technical	module length, width	m x m	1.2 x 0.6
data sheet	weight	kg	13.3
	nominal power of module @STC (name plate)	Wp	102.5
	PV technology; module efficiency	%	CIGS , 16 %
	power density	W/m ²	142.4
	T-coefficient Power	%/К	-0.36
Site information	average annual global radiation; horizontal	kWh/m²a	1200
	orientation (N=0°; E=90°; S=180°, W=270°)	0	whole facade (91%)
	inclination (0 = horizontal , 90°= facade)	o	90
	annual solar radiation @ specific PV- installation	kWh/m²	994
	shading on BIPV (annual mean)	%	0
BIPV innstallation	application category (A –E)	IEC 63092-1:2020: Category	С
	system category (topology)	roof, façade or ext. integrated device	facade
	sub-system (morphology)	e.g. curtain wall, window, roofing	
	building type		high rise building; offices
	number of modules	Ν	
	total installed area BIPV building skin	m ²	4800
	total nominal power BIPV building skin	Wp	440000

only production of PV considered for environmental PIs

Example 3a: Zentrum für höchsteffiziente Solarzellen at Fraunhofer ISE, DE (Clean rooms, laboratories, offices) for visual performance assessment

Ġ

- South-east oriented facade
- Two PV strips, 66 m long, 1.2 m high in a rear-ventilated rainscreen
- Glass configuration and mounting in accordance with DIN 18008
- Glass-glass PV modules, c-Si, MorphoColor[®] coating
- Installed power ~18 kWp
- Installation to be completed in 2022
- Architects: BRECHENSBAUER WEINHART + PARTNER ARCHITEKTEN mbB
- Contact Person: Helen Rose Wilson /

FH ISE

Example 3b: Building N at Fraunhofer ISE, DE (workshops) – for energy-relevant, economic and possibly environmental assessment

- South-east oriented façade
- One PV strip, 27 m long, 1 m high in a rear-ventilated rainscreen
- Glass-glass PV modules with high-efficiency back-contact c-Si cells
- Anti-glare surface structure
- Installed power ~ 5.3 kWp
- Operating since 2016
- Contact person: Helen Rose Wilson / Fraunhofer ISE

Apply matrix to real BIPV installations....

first test runs... already lessons learned.... several iterations needed

- -It is very difficult to get data on real BIPV installations
- -Information is not available for all four PI categories for some BIPV installations

-For the environmental PIs:

- in addition to the impact from the manufacturing phase, also material replacement effects (of the building materials) and Endof-Life phase (recycling, re-use of materials/components) can/should be taken into account
- so far only PV was taken into account but not the substructure and glass
- close cooperation with the experts within Task 12 required

The application of the multidimensional evaluation matrix on realized BIPV projects (B4) allows for comparing the overall performance of a BIPV - installations and identify best-practice examples (B5) -> publication

iea-pvs.org

Thank you for your interest and attention! Do you have any comments or questions? Gabriele C. Eder / OFI / Lead Subtask B / Task 15 gabriele.eder@ofi.at

