

Franz Baumgartner, ZHAW Winterthur, Switzerland

8th World Conf. PV Energy C.; Milano, 26th Sept 2022

IFA

PVPS

- Goal of T13 ST2.5 Performance at partial shading
- What is the potential benefit of Optimizer (MLPE)
- Method of estimation at light shading conditions
- Outcome WCPEC-8 Poster Journal Paper
- Call for typical shading condition in different countries

Figure 4. Single-family home with residential PV system (modules with 3 bypass diodes) and shading objects of type chimney and ventilation pipe. The 13 kWp PV plant was implemented by PV installer in Switzerland. Reproduced with permission.¹³⁰ Copyright 2022, Alsona AG.

Sol. RRL 2022, 2200596

2200596 (5 of 15)

© 2022 The Authors. Solar RRL published by Wiley-VCH GmbH

Module Level Power Electronics (MLPE)

School of Engineering IETE Institut für Energiesysteme und Fluid-Engineering Ġ

PVA Schneider, Turbenthal

Theoretical available Max DC Power

School of Engineering IEFE Institut für Energiesysteme und Fluid-Engineering

Figure 6. Second time step of the simulated PV system at 11:05 of August 1, 2018 (same shading scenario as described in the caption of Figure 5).

at 11:50 only the MLPE find max. Power

Figure 7. Third time step of the simulated PV system at 11:50 of August 1, 2018 (same shading scenario as described in the caption of Figure 5).

MLPE Real Efficiency ZHAW Measurement

School of Engineering IEFE Institut für Energiesysteme und Fluid-Engineering

Annual Simulation Results 1 with real Eff.

System A : MLPE @ Chimney - nearSystem B : SINV @ Chimney - farOptimizer Solaredge SE3500H (HD-wave)+P370Stringinverter Huawei SUN2000-3.68KTL-L1

PV Plan Designer will find OPTIMUM

PVPS

System of 14 PV modules: Percentage Performance Benefit of MLPE (new DC/AC) versus SINV

School of

Engineering IEFE Institut für Energiesysteme

Figure 12. Comparison of the SINV: SUN2000-3.68KTL-L1 and MLPE: SE3500H with P370 power optimizer for a 14-module residential PV plant. Annual MLPE yield gain for 10 chimney positions visualized as boxes and their magnitude indicated by color bar. Minimum 0.9% and maximum MLPE yield gain 1.4% are denoted by gray text boxes

C. Allenspach, A. Bänziger, A. Schneider, F. Carigiet, F. Baumgartner, Conference Paper at 8th WCPEC 2022, Milano and published as Journal Paper in www.solar-rrl.com

PV Plan Designer will find OPTIMUM

PVPS

System of 14 PV modules: Percentage Performance Benefit of MLPE (old DC/AC) versus SINV

Figure 13. Comparison of the SINV: SB3.6-1AV-41 and NILPE: SE3500 (non-HD-wave) with P370 power optimizer for a 14-module residential PV plant. Annual MLPE yield gain for 10 chimney positions visualized as boxes and their magnitude indicated by color bar. Minimum 0.6% and maximum MLPE yield gain 0.02% are denoted by gray text boxes

C. Allenspach, A. Bänziger, A. Schneider, F. Carigiet, F. Baumgartner , Conference Paper at 8th WCPEC 2022, Milano and published as Journal Paper in www.solar-rrl.com

School of

Engineering IEFE Institut für Energiesysteme

Annual Simulation Results 2 with real Eff.

System A : MLPE

Optimizer Solaredge SE3500H (HD-wave)+P370

System B : **SINV** Stringinverter Huawei SUN2000-3.68KTL-L1

	MLPE – new–	MLPE – old–	SINV -new-
Chimney «near»	96.2%	94.4%	95.7%
Chimney «far»	96.2%	94.4%	96.6%
Manufacturer	98.8% · 98.8% = 97.6%	98.8% · 97.5% = 96.3%	97.3%

Shading moments n :	1	2	3	4	5	6
Date $+$ Time of shading moments n :	July 3 rd , 10:55	April 3 rd , 08:55	Aug. 13 th , 10:00	Sept. 4 th , 14:50	June 9 th , 14:35	April 17 th , 12:20

	1		2		3	
	I_{MPP} [A]	V_{MPP} [V]	I_{MPP} [A]	V_{MPP} [V]	I_{MPP} [A]	V_{MPP} [V]
Module 1 - 6,						
8 - 10 and 12 - 13	2.06	35.37	4.19	35.37	5.70	35.37
Module 7	2.06	35.30	1.55	38.81	4.59	34.61
Module 11	2.06	35.37	4.18	23.40	5.07	34.74

	4			5	6	
	I_{MPP} [A]	V_{MPP} [V]	I_{MPP} [A]	V_{MPP} [V]	I_{MPP} [A]	V_{MPP} [V]
Module 1 - 13,						
(all PV-modules)	7.90	31.71	9.26	30.44	10.81	30.26

SdVq

School of Engineering

IEFE Institut für Energiesysteme und Fluid-Engineering

12 Various rooftops in Zurich City, by Juliet Haller (AfS), Office for Urban Development - City of Zurich, «Leitfaden Dachlandschaften»

SFH 13kWp by PV installer, «Alsona AG» - Webpage: https://www.alsona.ch/

PV Output Estimation with Partial Shading

- Shading by obstacles in Switzerland
- Estimation by simulation with 3D PV-modell

SD

n

School of Engineering

Definition of relevant shading objects

How and where to gather the pictures of shading objects:

Link: <u>MS Teams Subfolder: >Shading Situations</u>

ST2_Performance and Durability of PV Systems > ST2.5_Module Power Electronics Efficiency and Shading > 03_Data > 2_simulation verification > Shading Situations

I – Vegetation (e.g. Trees)

Pictures by Bouygues E&S InTec Schweiz AG, Geschäftseinheit Helion

Franz Baumgartner, PVPS T13 ST2.5

bauf@zhaw.ch

www.zhaw.ch/=bauf

C. Allenspach, A. Bänziger, A. Schneider, F. Carigiet, F. Baumgartner, Conference Paper at 8th WCPEC 2022, Milano and published as Journal Paper in www.solar-rrl.com

