IEA PVPS Task 16 Solar Resource and Forecast Data for Planning and Operating PV Plants

Benchmark of satellite and NWP derived solar resource

<u>Anne Forstinger (CSPS),</u> Stefan Wilbert (DLR), Adam Jensen (DTU), Birk Kraas (CSPS), Carlos F. Peruchena (CENER), Chris Gueymard (SCS), Dario Ronzio (RSE), Dazhi Yang (Harbin Institute of Technology), **Elena Collino (RSE),** Jesus Polo Martinez (CIEMAT), Jose A Ruiz-Arias (UMA), Natalie Hanrieder (DLR), Philippe Blanc (MINES Paristech), Yves-Marie Saint-Drenan (MINES Paristech)

WCPEC - 8 Milan, 27.09.2022

Ricerca Sistema Energetico

Technology Collaboration Programme

1. Motivation

2. Data collection

3. Benchmark

4. Results

5. Conclusion

Motivation

Available longterm solar radiation data

		Data	oase Pe Ri	iod of cord	Temporal Resolution	Spatial Coverage		Spatia Resoluti	l on		Data Eler and Sou	nents irces	Availability
		CM	SAF 2018	present	15 minute, 30 minute, daily	Europe, Africa, p	arts	0.05°		Based on S	SEVIRI ins the MSG s	truments onboard atellite;	https://wui.cmsaf.eu/
	Database	Period Record	of Tempor I Resoluti	l n	Spatial Coverage	Spatial Resolution		Data E and	Element Sources	S		Availability	
													https://wui.cmsaf.eu/
	Tal Period of	ble 6-1. Inven	tory of Solar I	esouro	ce Data Sources	s, Presented in Al	phabe	tical Orde	r			.soda-pro.com/web-	
Database	Record	Resolution	Coverage		Resolution 32 (active and	and So	urces			Availability		ation-service	https://daymet.omi.gov
U.S. Department of Energy (DOE) Atmospheric	1997-present	20-second instantaneous samples and	Southern G Plains, North S	eat 1 ope of	inactive) 11 stations inactive (7 at Southern	GHI, DNI, DHI, DIR, (reflected) shortw Measurements fr Laboratory, Inc., Mod	UIR, an vave irra rom the del PSP	d upwelling diance. Eppley (GHI, DHI,	DOE, Facil Data	ARM Climate F lity: http://www.a sets are labele	d SIRS,		http://www.pa.op.dlr.de/ISIS/
Radiation Measurement (ARM) Program	1997-present	1-minute averages of 2-second scans	Alaska, and tr western Pae	pical ific	Great Plains, 1 at North Slope of Alaska, and 3 at tropical western Pacific)	and upwelling short Model 8-48 (DHI afte (DNI), and Model P radiom	wave in r 2000), IR (DIR eters	adiance), Model NIP and UIR)	data fo locatio the V	orm the Billings ons are also sub VRMC-BSRN a p://www.bsrn.av	and E13 mitted to rchives: vi.de/.	solaranywhere.com	ttps://cds.climate.copernicus.e /cdsapp - //dataset/reanalysis-
		1 minute			76 (active and inactive) radiometric	The number and type vary by station. It measurements inclu downwelling infrared it	e of mea Basic ra de GHI, rradianc	asurements diation DNI, DHI, se, upwelling					era5-single-levels?tab=form
Baseline Surface Radiation Network (BSRN)	1992–present	(3 minute for SURFRAD stations before 2009)	Global	d	stations, 17 of 76 are either decommissioned or candidates to become BSRN stations (as of 4/17/2020)	infrared irradiance (reflected) shortw Measurements are fr various manufact meteorological obse measurements, and n and supporting me availa	e, and u vave irra rom radi curers. S rvations cumerou easurem ble.	pwelling diance. iometers of ynoptic , upper air s expanded ients are	The W Center base http://w	orld Radiation M r (WRMC) provi d and FTP data ww.bsm.awi.de	Aonitoring des web- access: <u>/en/home/</u>	<u>s.larc.nasa.gov/data/</u>	University of Oldenburg: t <u>tp://www.energiemeteorologie</u> <u>.de</u> . available on request
Australian Bureau of Meteorology (BOM) One-Minute Solar Data	Varies	1 minute	Australia		21 radiometric stations	ghi, dni, dhi, dir, i	ongwav	e, sunshine	<u>http://v</u> data/or	vww.bom.gov.a neminsolar/stati	u/climate/ ons.shtml	<u>//wui.cmsaf.eu/</u>	es Presses MINES ParisTech: http://www.mines- paristech.fr/Ecole/Culture- scientifique/Presses-des- mines/#54. See also
Copernicus Atmospheric Monitoring Service (CAMS) McClear	2004-present	1 minute, 15 minute, 1 hour, 1 day, 1 month	Global		Various input data sources with different spatial resolutions are interpolated to the location of interest.	Clear-sky global, dir diffuse irradiances atmospheric conditio vapor, trace gases, parame	ect, dire ; inputs ns (aero surface iters).	ect normal, describe isols, water reflectivity	http://\ ser	www.soda-pro.c vices/radiation/ mcclear	com/web- cams-	/wui.cmsaf.eu/	ttp://www.soda-pro.com/home.

Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 3rd Ed. Chapter 6-6 –16 https://iea-pvps.org/key-topics/best-practices-handbook-for-the-collection-and-use-of-solar-resource-data-for-solar-energy-applications-third-edition/

Data from ground stations as reference data from 2015 to 2020

- Global Horizontal Irradiation GHI, Direct Normal Irradiation DNI, Diffuse Horizontal Irradiation DIF
- Minimum of 2 years within 2015 to 2020 (1 minute data resolution)

Tier 1 GHI, DNI and DIF measured separately Solar tracker

Tier 2 GHI and (DNI or DIF) measured

Data collection

5

Data collection - Quality control of measurements

- Method developed by experts •
- Single QC method for all • stations
- Automatic flags and manual • review
- Most advanced QC method for • **1-min measurements**

Published method • doi:10.18086/swc.2021.38.02

Publication includes a data • catalogue of most reference data (incl. flags)

Name: Sw-SMHI-Visby Lon (°E): 18.345 Lat (°N): 57.673 First day: 2019-01-01 Last day: 2020-01-01 GHI sum = 1124kWh/m² DNI sum = 1304kWh/m²

Data collection - Quality control of measurements

G

- "Only" 28% of the stations from BSRN (Baseline Surface Radiation Network)
- Some are private

PVPS

Total station number: 126

Data collection - benchmark participants

Provider	Dataset / model	Main data source	Spatial coverage	
DWD	SARAH-2.1	MSG satellites	Full disk, Meteosat	Usable Coverage of Weather Satellites
CAMS	CAMS v3.2	MSG satellites	Europe / Africa / Middle East / Atlantic Ocean (Meteosat 2nd Gen. field of view66°N to 66°N).	
	CAMS pre-v4		Clear-sky data available globally.	
Meteotest	Meteotest, various sat.	GOES-16, MSG-4, IODC, HIMAWARI-8, Meteotest MOS	Global (-66°N to 66°N)	GOES West GOES East Meteosat 8 Meteosat 78.5 Himawari
CSIRO	CSIRO	Himawari-8	Australian continent	
NREL (NSRDB)	Physical Solar Model Version 3	GOES	Contiguous United States, part of Alaska, southern Canada, Central America, and part of South America. Longitudes: 25°W to 175°W Latitudes: 21°S to 60°N to the north	
Solargis	Solargis v2.x, various sat.	various satellites	Global (60°N to 45/55°S), land area and adjacent sea and oceans. Regions between 6065°N on request.	
ВоМ	BoM APS3 ACCESS-G3*	Numerical Weather Prediction Models	Global	Location of the current geostationary satellites that provide coverage around the globe. <i>Image from NREL</i>
NASA	CERES**	various satellites	Global (60°N to 55°S), land area	
KNMI	MSG-CPP algorithm v1	MSG satellites	Full disk, Meteosat	

Benchmark

PVPS

• Evaluation on hourly averaged data

Abbr.	Meaning
MBD, rMBD	Mean bias deviation, relative mean bias deviation
RMSD, rRMSD	Root mean square deviation, relative root mean square deviation
MAD, rRMSD	Mean absolute deviation, relative mean absolute deviation
Stdev	Standard deviation
KSI	Kolmogoroff-Smirnoff Index
СЫ	Combined Performance Index
OVER	Relative frequency of exceedance situations

- Relative error metrics normalized to mean of reference ground data (only mean of data points that are used in comparison: valid and >10° solar elevation
- Metrics are summarized as weighted average of each year (weighting: number of valid hours per year)
 - Station years with <1000 h/year are discarded
- Total number of hours per site and data set varies

Results – Global Horizontal Irradiation (GHI)

Results – Global Horizontal Irradiation (GHI)

- Different data set size per station and provider
- Performance varies for individual stations

PVPS

- Some "difficult" stations for multiple dataset
- Dependency on continent for some dataset

Results – Direct Normal Irradiation (DNI)

Results – Direct Normal Irradiation (DNI)

- Larger bias than for GHI SdVd
 - More "difficult stations"

Results – Direct Normal Irradiation (DNI)

PVPS

Dar es Salam (Tanzania): often smog

15

Results – Direct Normal Irradiation

 Often due to station location (island, mountain, smog)

Izana (Canary Islands): mountain in the ocean

SdN

- Maps emphasize different data set sizes per test data provider and station
- Data set based on NWP shows almost exclusively positive bias
- Some individual stations show difficulties with multiple data providers
- Dependency on continent for some models
- DNI tendentially larger bias (negative and positive)
- Included global data set derived from polar satellites and geostationary satellites (CERES) has significantly higher deviations than other data sets, at times even higher than the NWP data.
- Benchmark results can be used to identify good data sets for different regions or at times even specific sites, recommendation for procedure will be published 17

iea-pvs.org

Thank you for your attention! Thank you to the evaluators & data providers

Contributors (data and review only): CSIRO, DLR/CAMS, DWD, KNMI, Meteotest, NREL, Solargis

This work has been partly financed by the Research Fund for the Italian Electrical System under the Contract Agreement between RSE S.p.A. and the Ministry of Economic Development - General Directorate for the Electricity Market, Renewable Energy and Energy Efficiency, Nuclear Energy in compliance with the Decree of April 16th, 2018.

REF: a.forstinger@cspservices.de

Supported by:

We thank the German Federal Ministry of Economics Affairs and Climate Action for funding the SOLREV project.

on the basis of a decision by the German Bundestag

			Providers defined how to use their data for (averaged) 60min benchmark
Provider	Model/main data sources	Spatial resolution	Temporal resolution
DWD	SARAH-2.1, MSG satellites, doi: 10.5676/EUM_SAF_CM/SARAH/V002_01	based on 0.05° gridded sat. data (~5.5 km), various resolutions for individual input data	1 min (based on 30 min satellite data), 30 min, daily, monthly
CAMS	CAMS v3.2 and experimental pre-v4 APOLLO_NG/Heliosat- 4(DLR) method, MSG satellites for clouds, clear sky from CAMS integrated forecasting system	output interpolated to location of ground station , input data in various resolutions: 3 to 10 km (sat. pixel), DTM up to ~100 m, aerosol/water vapour/ozone 0.4°, ground albedo 6 km	output: 1 min , 15 min, 60 min, 1d, monthly; input: 15 min clouds, 3 h aerosols/water vapour/ozone, monthly ground albedo
Meteotest	GOES-16, MSG-4, IODC, HIMAWARI-8, Meteotest MOS	1/16 ° (~7 km)	15 min
CSIRO	Himawari-8	2 km	max 10 min
NREL (NSRDB)	GOES Model: Physical Solar Model Version 3	GOES: 1998- 2019, gridded segments (4 km) and for 2018 and 2019, 2 km spatial resolution	GOES: 1998- 2019 30min, 2018 and 2019, 5min for continental US and 10-15 min full disk.
Solargis	Solargis model v2.x; GOES, Meteosat MSG and MFG (PRIME and IODC positions), Himawari and MTSAT satellites; Aerosols from CAMS atmospheric model	Final result 250 m , satellite data 2-4 km	10 and 15 min depending on satellite, 1 and 5 min on request. 15 min data used for benchmark
BoM	BoM APS3 ACCESS-G3	~12 km	1 h , (only 23-07-2019 and 2020)
NASA	CERES MODIS on Terra & Aqua (polar satellites) + geostationary satellites (GOES, Meteosat, MTSAT, Himawari)	1°x1° (111km)	1 h
KNMI	Input: MSG satellites (SEVIRI data: all channels except HRV); multi-yr mean climatologies of water vapor, ozone and aerosol (ECMWF/CAMS), surface albedo (MODIS). Processing with MSG-CPP algorithm v1.	full disk, satellite pixel size (~3 km)	15 min

Regional model adaptation by providers

Ċ

- Known stations before the benchmark
- Applied adaptations before the benchmark

Model	Sites used before benchmark	Used adapation
ACCESSG3		
CAMS pre-v4		
CAMS v3.2		Field of view wide bias correction applied
CERES		
CSIROHIMAWARI		Continental wide spatial calibration applied
DWDSARAH		
KNMISEVIRI		
METEOTEST	34	Interpolated linear adaptation
NRELGOES		
SOLARGIS	23	

- Data is used as it was received from the providers (no adaptation)
- All data points evaluated in 60-min resolution
- Treatment of data islands
 - At 5-min resolution, check if at least 3-min time stamps are valid
 - Check if at least 10 5-min intervals in the hour are valid, otherwise discard the hour
- Metrics are summarized as weighted average of each year (weighting: number of valid hours per year)
 - Station years with <1000 h/year are discarded
- Total number of hours per site and data set varies

Tables of results – relative mean bias deviation

Subselection in Africa: GHI, rMBD (%)

site ARA AUA CAI DEA GOB KWA MIS OUJ TAT VUW ADR CHI DAR Mean Std Abs_Mean Abs_Std model

Ρ	-0.7	2.1	-0.2	0.8	-0.3	-2.4	-1.9	0.0	-0.7	4.3	-3.4	4.5		0.6	2.4	1.8	1.6
Q	-0.4	-1.1		-1.0	0.4	3.1	0.3	1.2	3.1	4.4	2.8	3.7	12.3	1.4	2.0	1.9	1.5
R	-2.1	0.8	-1.7	0.2	-0.5	4.0	1.8	1.8	0.7	4.1	-3.3	6.9	10.3	1.8	2.6	2.3	2.1
S	-1.1	-1.1	4.6	-2.7	-0.5	3.4	-0.6	1.9	1.9	6.3	2.1	5.5	-13.0	1.3	3.0	2.5	2.0
Т	-5.2	-1.3	-3.4	-1.4	-4.0	-2.5	-4.9	-2.3	-5.3	2.0	-7.5	3.4	14.6	-2.1	3.0	3.2	1.5
U	-4.7	4.2	-5.3	1.7	-4.7	-1.6	4.3	4.2	-4.4	3.9		7.3	9.7	1.0	4.5	4.1	1.6
V	-5.4	1.1		-1.7	-4.3	2.7	-7.2	-2.4	-5.6	6.0	-10.0	7.8	11.0	-0.9	5.1	4.4	2.3
W	2.3		7.6		4.5			4.1	4.5								

Tables of results -- relative mean bias deviation

G

(abbreviated) Sites evaluated in the continent

Subselection in Africa: GHI, rMBD (%)

site model ARA AUA CAI DEA GOB KWA MIS OUJ TAT VUW ADR CHI DAR Mean Std Abs_Mean Abs_Std

		Ρ	-0.7	2.1	-0.2	0.8	-0.3	-2.4	-1.9	0.0	-0.7	4.3	-3.4	4.5		0.6	2.4	1.8	1.6
	(Q	-0.4	-1.1		-1.0	0.4	3.1	0.3	1.2	3.1	4.4	2.8	3.7	12.3	1.4	2.0	1.9	1.5
		R	-2.1	0.8	-1.7	0.2	-0.5	4.0	1.8	1.8	0.7	4.1	-3.3	6.9	10.3	1.8	2.6	2.3	2.1
		S	-1.1	-1.1	4.6	-2.7	-0.5	3.4	-0.6	1.9	1.9	6.3	2.1	5.5	-13.0	1.3	3.0	2.5	2.0
/		Г	-5.2	-1.3	-3.4	-1.4	-4.0	-2.5	-4.9	-2.3	-5.3	2.0	-7.5	3.4	14.6	-2.1	3.0	3.2	1.5
		U	-4.7	4.2	-5.3	1.7	-4.7	-1.6	4.3	4.2	-4.4	3.9		7.3	9 .7	1.0	4.5	4.1	1.6
		V	-5.4	1.1		-1.7	-4.3	2.7	-7.2	-2.4	-5.6	6.0	-10.0	7.8	11.0	-0.9	5.1	4.4	2.3
		N	2.3		7.6		4.5			4.1	4.5								

Test data providers evaluated at the sites (all with sufficient available data)

PVPS

Subselection in Africa: GHI, rMBD (%)

site ARA AUA CAI DEA GOB KWA MIS OUJ TAT VUW ADR CHI DAR Mean Std Abs_Mean Abs_Std model

P	-0.7	2.1	-0.2	0.8	-0.3	-2.4	-1.9	0.0	-0.7	4.3	-3.4	4.5		0.6	2.4	1.8	1.6
Q	-0.4	-1.1		-1.0	0.4	3.1	0.3	1.2	3.1	4.4	2.8	3.7	12.3	1.4	2.0	1.9	1.5
R	-2.1	0.8	-1.7	0.2	-0.5	4.0	1.8	1.8	0.7	4.1	-3.3	6.9	10.3	1.8	2.6	2.3	2.1
S	-1.1	-1.1	4.6	-2.7	-0.5	3.4	-0.6	1.9	1.9	6.3	2.1	5.5	-13.0	1.3	3.0	2.5	2.0
Т	-5.2	-1.3	-3.4	-1.4	-4.0	-2.5	-4.9	-2.3	-5.3	2.0	-7.5	3.4	14.6	-2.1	3.0	3.2	1.5
U	-4.7	4.2	-5.3	1.7	-4.7	-1.6	4.3	4.2	-4.4	3.9		7.3	9.7	1.0	4.5	4.1	1.6
V	-5.4	1.1		-1.7	-4.3	2.7	-7.2	-2.4	-5.6	6.0	-10.0	7.8	11.0	-0.9	5.1	4.4	2.3
W	2.3		7.6		4.5			4.1	4.5								

Weighted average of rMBD (%) of each provider at each site (!) Caution: the same site can have a different number of data points for different providers if the test data contains gaps or covers a different time period

Tables of results -- relative mean bias deviation

Tables of results – relative mean bias deviation

mean calculation

Tables of results -- relative mean bias deviation

Subselection in Africa: GHI, rMBD (%)

Tables of results – relative MBD – use case

Africa: DNI, rMBD (%)

site	ALE	ARA	AUA	CAI	DEA	DUR	GAB	GOB	KWA	MIS	OUJ	POR	PRE	STE	TAT	VUW	ADR	СНІ	CHL*	СНО*	DAR	IZA	KAA*	KAO*	KAS*	LUS	MBO*	MUT*	MZU*	TAM	Mean	Std	Abs_Mean	Abs_Std
model																																		
SOLARGIS	1.4	-2.7	4.1	-1.4	2.9	-0.9	4.4	-0.7	-3.4	-5.1	-4.2	4.5	-2.0	-0.1	-4.0	7.5	-5.6	1.5	2.9	3.8		-14.4	3.7	2.4	1.7	2.1	0.4	-3.1	4.4	5.6	0.5	4.5	3.5	2.8
KNMISEVIRI	-6.0	-9.9	-8.2	7.2	-9.5	2.3	-1.4	-8.0	4.2	-6.7	-5.4	2.6	-1.2	-6.2	-6.1	6.8	4.5	8.5	4.3	3.8	-27.8	-41.8	7.1	4.8	7.3	3.2	-0.5	6.2	6.3	4.3	-1.5	10.0	6.8	7.4
CAMS_pre-v4	-9.8	-12.8	-11.9	-0.8	-6.6	-5.1	-4.0	-9.7	-1.7	-15.3	-11.0	2.2	-11.4	-7.9	-15.6	-1.5	-22.0	-4.1	-2.5	-1.6	14.7	-31.2	-0.6	-0.5	-3.4	-3.4	-8.3	3.2	-1.0	-16.4	-7.1	7.3	7.5	6.9
DWDSARAH	-1.6	-6.4	-6.8		-6.0	8.7	0.8	-4.5	8.7	2.4	4.7	4.5	0.9	-3.1	5.2	6.8	17.1	4.5	11.4	7.7	33.3	-42.2	10.9	7.9	11.7	6.8	36.9	13.0	13.7	12.0	4.0	12.7	9.3	9.5
CAMS_v3.2	-4.4	-11.1	1.2		-4.2	14.4	4.0	-8.8	13.9	-11.6	-3.5	6.6	1.7	-3.5	-12.0	16.6	-14.3	18.8	14.5	13.6	39.0	-7.6	10.1	6.3	15.7	11.9	-2.2	7.2	25.6	2.3	4.3	10.5	9.4	6.1
CERES	-20.5	-10.9	-9.5	-14.9	-8.5	-0.1	-8.7	-6.4	3.0	-8.4	-12.1	-18.4	-3.6	-1.8	-14.2	-2.2	-20.7	-6.0	-4.5	-8.0	5.3	-49.3	-10.8	-13.8	-12.9	-5.9	-9.8	-10.6	-1.9	-17.8	-10.1	9.6	10.4	9.4
METEOTEST	-12.1	-12.3	6.2	-4.9	1.0	-5.6	6.9	-12.2	-6.9	19.7	18.2	-1.6	12.9	-3.8	-7.0	5.0		8.9	22.8	19.3	14.1	-37.5	30.5	20.2	22.8	21.3	-12.3	26.3	37.5	11.8	6.7	17.0	14.9	10.1

Africa: GHI, rMBD (%)

site	ALE	ARA	AUA	CAI	DEA	DUR	GAB	GOB	KWA	MIS	OUJ	POR	PRE	STE	TAT	VUW	ADR	CHI	CHL*	СНО*	DAR	IZA	KAA*	KAO*	KAS*	LUS	MBO*	MUT*	MZU*	TAM	Mean	Std	Abs_M	ean Abs_Std	
model																																			
SOLARGIS	0.7	-0.7	2.0	-0.2	0.8	0.9	2.4	-0.3	-2.5	-2.2	-0.1	2.6	1.2	1.4	-0.9	4.1	-3.5	4.5	3.9	2.9		-9.4	3.6	2.8	0.5	1.3	0.9	2.6	5.5	-1.8	1.0	2.9	2.3	2.0	
CERES	-4.1	-2.1	0.6	-1.7	0.1	4.3	0.0	-0.5	3.8	0.6	1.3	-1.6	1.6	2.6	0.4	4.2	-3.3	6.8	5.5	3.2	10.4	-16.3	3.3	0.2	-0.6	1.2	1.9	2.6	6.7	-4.2	0.8	4.4	3.0	3.3	
CAMS_pre-v4	-3.4	-5.2	-1.2	-3.2	-1.4	-0.4	-0.2	-4.1	-2.6	-5.2	-2.5	1.9	-0.3	-1.1	-5.4	1.7	-7.6	3.4	5.7	4.7	14.9	-14.1	5.4	4.2	0.9	2.9	-2.5	6.7	5.6	-6.4	-0.5	4.7	3.7	2.9	
KNMISEVIRI	0.2	-1.1	-1.2	4.6	-2.8	4.2	1.6	-0.5	3.4	-0.8	1.9	3.4	2.5	-1.6	1.8	6.4	2.1	5.5	5.9	4.7	-12.8	-21.4	6.7	5.1	2.8	3.4	1.2	7.1	5.0	-1.2	1.6	5.4	3.8	4.1	
DWDSARAH	0.4	-0.4	-1.1		-1.0	5.6	1.8	0.5	3.0	-0.2	1.0	1.8	1.9	-0.3	2.9	4.3	2.7	3.7	7.9	6.0	12.5	-25.0	6.8	5.7	3.7	3.8	7.3	8.3	6.4	0.3	2.0	6.1	4.1	4.9	
CAMS_v3.2	-1.4	-5.4	1.0		-1.7	4.6	0.8	-4.3	2.7	-7.6	-2.7	0.6	0.6	-1.1	-5.8	6.1	-10.1	7.9	7.4	6.1	11.3	-3.7	4.5	2.5	3.4	3.8	-8.6	3.5	9.1	-5.2	0.6	4.9	4.1	2.6	
METEOTEST	-4.1	-4.7	4.0	-5.6	1.7	-0.8	2.9	-4.8	-1.8	3.8	3.9	0.1	5.5	-0.8	-4.7	3.8		7.1	11.4	9.6	9.9	-24.3	13.7	9.2	7.3	8.5	-5.9	11.9	14.2	-3.0	2.4	8.1	6.4	5.3	
ACCESSG3		2.3		7.6	5.5			4.6			3.7				4.2																				

Tables of results – relative MBD – use case

Africa: DNI, rMBD (%)

Africa: GHI, rMBD (%)

site	ALE	ARA	AUA	CAI	DEA	DUR	GAB	GOB	KWA	MIS	OUJ	POR	PRE	STE	TAT	VUW	ADR	CHI	CHL*	CHO*	DAR	IZA	KAA*	KAO*	KAS*	LUS	MBO*	MUT*	MZU	TAM	(Mean	Std	Abs_Mean	Abs_Std
model																																		
SOLARGIS	0.7	-0.7	2.0	-0.2	0.8	0.9	2.4	-0.3	-2.5	-2.2	-0.1	2.6	1.2	1.4	-0.9	4.1	-3.5	4.5	3.9	2.9		-9.4	3.6	2.8	0.5	1.3	0.9	2.6	5.5	-1.8	1.0	2.9	2.3	2.0
CERES	-4.1	-2.1	0.6	-1.7	0.1	4.3	0.0	-0.5	3.8	0.6	1.3	-1.6	1.6	2.6	0.4	4.2	-3.3	6.8	5.5	3.2	10.4	-16.3	3.3	0.2	-0.6	1.2	1.9	2.6	6.7	-4.2	0.8	4.4	3.0	3.3
CAMS_pre-v4	-3.4	-5.2	-1.2	-3.2	-1.4	-0.4	-0.2	-4.1	-2.6	-5.2	-2.5	1.9	-0.3	-1.1	-5.4	1.7	-7.6	3.4	5.7	4.7	14.9	-14.1	5.4	4.2	0.9	2.9	-2.5	6.7	5.6	-6.4	-0.5	4.7	3.7	2.9
KNMISEVIRI	0.2	-1.1	-1.2	4.6	-2.8	4.2	1.6	-0.5	3.4	-0.8	1.9	3.4	2.5	-1.6	1.8	6.4	2.1	5.5	5.9	4.7	-12.8	-21.4	6.7	5.1	2.8	3.4	1.2	7.1	5.0	-1.2	1.6	5.4	3.8	4.1
DWDSARAH	0.4	-0.4	-1.1		-1.0	5.6	1.8	0.5	3.0	-0.2	1.0	1.8	1.9	-0.3	2.9	4.3	2.7	3.7	7.9	6.0	12.5	-25.0	6.8	5.7	3.7	3.8	7.3	8.3	6.4	0.3	2.0	6.1	4.1	4.9
CAMS_v3.2	-1.4	-5.4	1.0		-1.7	4.6	0.8	-4.3	2.7	-7.6	-2.7	0.6	0.6	-1.1	-5.8	6.1	-10.1	7.9	7.4	6.1	11.3	-3.7	4.5	2.5	3.4	3.8	-8.6	3.5	9.1	-5.2	0.6	4.9	4.1	2.6
METEOTEST	-4.1	-4.7	4.0	-5.6	1.7	-0.8	2.9	-4.8	-1.8	3.8	3.9	0.1	5.5	-0.8	-4.7	3.8		7.1	11.4	9.6	9.9	-24.3	13.7	9.2	7.3	8.5	-5.9	11.9	14.2	-3.0	2.4	8.1	6.4	5.3
ACCESSG3		2.3		7.6	5.5			4.6			3.7				4.2																			

Stations with * ≻Tier 2 stations Not all QC tests >Higher uncertainty

PVPS

Tables of results – relative MBD – use case

Africa: DNI, rMBD (%)

Africa: GHI, rMBD (%)

site	ALE	ARA	AUA	CAI	DEA	DUR	GAB	GOB	KWA	MIS	OUJ	POR	PRE	STE	TAT	VUW	ADR	СНІ	CHL*	СНО*	DAR	IZA	KAA*	KAO*	KAS*	LUS	MBO*	MUT*	MZU*	TAM	Mean	Std	Abs_I	Mean Abs_	_Std
model																																			
SOLARGIS	0.7	-0.7	2.0	-0.2	0.8	0.9	2.4	-0.3	-2.5	-2.2	-0.1	2.6	1.2	1.4	-0.9	4.1	-3.5	4.5	3.9	2.9		-9.4	3.6	2.8	0.5	1.3	0.9	2.6	5.5	-1.8	1.0	2.9	2.3	2.0	
CERES	-4.1	-2.1	0.6	-1.7	0.1	4.3	0.0	-0.5	3.8	0.6	1.3	-1.6	1.6	2.6	0.4	4.2	-3.3	6.8	5.5	3.2	10.4	-16.3	3.3	0.2	-0.6	1.2	1.9	2.6	6.7	-4.2	0.8	4.4	3.0	3.3	
CAMS_pre-v4	-3.4	-5.2	-1.2	-3.2	-1.4	-0.4	-0.2	-4.1	-2.6	-5.2	-2.5	1.9	-0.3	-1.1	-5.4	1.7	-7.6	3.4	5.7	4.7	14.9	-14.1	5.4	4.2	0.9	2.9	-2.5	6.7	5.6	-6.4	-0.5	4.7	3.7	2.9	
KNMISEVIRI	0.2	-1.1	-1.2	4.6	-2.8	4.2	1.6	-0.5	3.4	-0.8	1.9	3.4	2.5	-1.6	1.8	6.4	2.1	5.5	5.9	4.7	-12.8	-21.4	6.7	5.1	2.8	3.4	1.2	7.1	5.0	-1.2	1.6	5.4	3.8	4.1	
DWDSARAH	0.4	-0.4	-1.1		-1.0	5.6	1.8	0.5	3.0	-0.2	1.0	1.8	1.9	-0.3	2.9	4.3	2.7	3.7	7.9	6.0	12.5	-25.0	6.8	5.7	3.7	3.8	7.3	8.3	6.4	0.3	2.0	6.1	4.1	4.9	
CAMS_v3.2	-1.4	-5.4	1.0		-1.7	4.6	0.8	-4.3	-7.6	-2.7	0.6	0.6	-1.1	-5.8	6.1	-10.1	7.9	7.4	6.1	11.3	-3.7	4.5	2.5	3.4	3.8	-8.6	3.5	9.1	-5.2	0.6	4.9	4.1	2.6		
METEOTEST	-4.1	-4.7	4.0	-5.6	1.7	-0.8	2.9	-4.8	-1.8	3.8	3.9	0.1	5.5	-0.8	-4.7	3.8		7.1	11.4	9.6	9.9	-24.3	13.7	9.2	7.3	8.5	-5.9	11.9	14.2	-3.0	2.4	8.1	6.4	5.3	
ACCESSG3		2.3		7.6	5.5			4.6			3.7				4.2																				
/PS		Stat	tior	ns v Tie	vith r 2 ≻N	ו * sta lot	tioi all (ns QC	tes	ts										Di	scu	SSE	ed s	tatic	ons	(sm	nog,	isla	nd)						
~ ~					≻H	ligh	ler	unc	certa	ain	ty																					3	30		

Example - IZA

- Izana, Canary Islands (2373 m a.m.s.l.)
- Is station below or above clouds?
- Snow cover or cloud cover?

- ≻Special station
- Helpful for comparing model performance in similar locations (mountain sites)
- ➤To estimate model performance for surrounding areas the above issues have to be considered (maybe not comparable).

User can select suitable datasets for the continent or climate zone of interest

32

Objective: estimate data quality for	Plots to look at
A specific continent in general	Table plots, and maps
A site that is close to or similar to a site used in this benchmark	Table and scatter plots of this site (multiplot with all test data sets)
A specific climate	Table plots for climate zone (not shown here), and maps
A specific geography (mountain, coast, other)	Table plots for this geography (not shown here), and maps
•••	

Conclusion

- Deviations between data sets and errors in general are much higher for DNI compared to GHI
- NWP data set often shows positive bias (ACCESSG3)
- Included global data set derived from polar satellites and geostationary satellites (CERES) has significantly higher deviations than other data sets, at times even higher than the NWP data.
 - Reason is very coarse resolution (1°), so that pixels (cells) are much larger than those of the other databases. For DNI the difference to the other satellite data sets is much more pronounced.
- Significant deviations between performance of different satellite-derived radiation data sets
- Most appropriate data set depends on site and also on continent and climate zone of interest
- Some stations are challenging for some models as high deviations are observed for several data sets (e.g. high mountains, smog)
- Benchmark results can be used to identify good data sets for different regions or at times even specific sites, recommendation for procedure will be published

Planned tasks

- Benchmark for site adapted data (one adaptation for all)
 - Planned for November 2022
- Histograms of deviation of yearly sums at all stations for each provider
 - Planned for November 2022
- Writing of Report
 - Q4 2022

Торіс	Time frame
Presentations:	
PVPMC Workshop (by Adam)	2022-08-2324
EMS 2022 (by Anne)	2022-09-06
WCPEC-8 (by Elena)	2022-09-26 30
SolarPACES (by Anne)	2022-09-26 30
IEA PVPS report "R1.4.2 Report on benchmarking results for satellite- and model-derived data sets [M72]" -QC can be summarized, use ref. to QC paper	End 2022 (report due by Q2 2023 according to task work plan)
Paper Benchmark with focus on conclusion on data sets, as a condensed version of the report (optional)	After report is finalized