

Yield Assessments and Performance Loss Rates of PV Power Systems

David Moser, Eurac Research

WCPEC, 26th September 2022

Technology Collaboration Programme

2

Calculation of uncertainty and framework for uncertainties in YA

Report IEA-PVPS T13-18:2020

Technology Collaboration Programme

Task 13 Performance, Operation and Reliability of Photovoltaic Systems

Uncertainties in Yield Assessments and PV LCOE 2020

Papart IEA DVDS T12-19-2020

Ġ

AUTHORS

Main Authors

David Moser, Institute for Renewable Energy, Eurac Research, Bolzano, Italy Sascha Lindig, Institute for Renewable Energy, Eurac Research, Bolzano, Italy Mauricio Richter, 3E, Brussels, Belgium Julián Ascencio-Vásquez, 3E, Brussels, Belgium Imre Horvath, IMEC, Leuven, Belgium Björn Müller, Fraunhofer ISE, Freiburg, Germany Mike Green, Green Power Engineering, Israel Jan Vedde, European Energy, Denmark Magnus Herz, TUV Rheinland, Cologne, Germany Bert Herteleer, KU Leuven, Gent, Belgium Karl-Anders Weiss, Fraunhofer ISE, Freiburg, Germany Bengt Stridh, Mälardalen University, Sweden

Contributing Authors

A.Schils, S. Ramesh, IMEC, Leuven, Belgium D. Barnard, European Energy, Denmark

Editors

David Moser, Institute for Renewable Energy, Eurac Research, Bolzano, Italy Boris Farnung, VDE Renewables GmbH, Germany

Benchmark and impact on LCOE and business models

PVPS

3

Typical uncertainty in YA

PVPS

eurac research	
rescaren	

Annual values	uncertainty	value	gains/loss	PR
	%	kWh/m ²	%	%
global irradiation on horizontal plane	4.0	1248		
irradiation on module plane	2.5	1448	16.0	
shading				
horizon shading	0.5	1445	-0.2	100.0
row shading	2.0	1422	-1.7	98.3
object shading	3.0	1422	0.0	98.3
soiling	0.5	1414	-0.5	97.9
deviations from STC				
reflection losses	0.5	1376	-2.7	95.2
	%	kWh/kWp	%	%
spectral losses	0.5	1363	-1.0	94.3
irradiation-dependent losses	0.8	1342	-1.5	92.9
temperature-dependent losses	1.0	1309	-2.5	90.5
mismatch losses	0.5	1298	-0.8	89.8
DC cable losses	0.5	1287	-0.8	89.1
inverter losses	1.5	1272	-1.2	88.0
inverter power limitation	0.5	1272	-0.1	88.0
additional consumption	0.5	1270	-0.1	87.9
AC cable losses low voltage	0.5	1265	-0.4	87.5
Transformer medium voltage	0.5	1253	-0.9	86.7
AC cable losses medium voltage	0.5	1252	-0.1	86.6
Transformer high voltage	0.0	1252	0.0	86.6
total	6.5	1252		86.6

Best practice

Typical uncertainty values (irradiance, temperature, soiling, shading, etc): ±5-10% [1]

Yield and Exceedance Probability

- Utilisation rate @P90 positively affected by reduction in uncertainty
- P50 values will highly depend on the choice of the insolation database
- Wrong assumptions can lead to under/overestimation of yield by >20%

Are YA reliable?

Link with business models and LCOE calculation

Typical uncertainty values on YA (irradiance, temperature, soiling, shading, etc): ±5-10%

N. Reich, J. Zenke, B. Muller, K. Kiefer, and B. Farnung, "On-site performance verification to reduce yield prediction uncertainties," in *Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd*, 2015, pp. 1–6.

M. Richter, T. Schmidt, J. Kalisch, A. Woyte, K. de Brabandere, and Lorenz, E, "Uncertainties in PV Modelling and Monitoring," 31st European Photovoltaic Solar Energy Conference and Exhibition, pp. 1683–1691, Nov. 2015.

D. Moser et al., "Technical Risks in PV Projects." Solar Bankability Deliverable www.solarbankability.com

D Moser, M Del Buono, U Jahn, M Herz, M Richter, K De Brabandere, Identification of technical risks in the photovoltaic value chain and quantification of the economic impact, Progress in Photovoltaics: Research and Applications 25 (7), 592-604, 2017

Uncertainty scenarios

Annual insolation variability

Trends for in-plane-irradiance ($G_{POA} = GTI$, left), Performance Loss Rate (Performance, middle) and annual energy yield (Yield, right)

Unavailability

- High unavailability with harsher weather conditions (snow, winds, etc.) during the European winter.

- Unavailability has decreased over time, possibly based on improved O&M protocols

Statistical indicators of mean monthly unavailability of 533 PV plants in 2019 (majority installed in Belgium, Germany and Switzerland)

Site Selection

Location: Bolzano, Italy Data available since August 2010 Technology: polycrystalline-Si Location: Alice Springs, Australia Data available since 2009 Technology: 3 crystalline technologies

South Korea Kazakhsta Puerto Rice

Comparison of initial YAs

Bolzano

PV Power Plant | Energy Yield

Alice Springs

Large spread of values

Real values within the P10-P90 range only for some YAs Averaging YAs might not be a good strategy!

10

Comparison of initial YAs

Alice Springs

Bolzano

Site adaptation

PVPS

Report IEA-PVPS T13-22:2021

SdVc

- Definition performance loss rates
- Critical review of existing calculation methodologies
- Best practice guidelines
- Development of data quality grading scheme

Motivation

Methodology comparison

S. Lindig, A. Curran, K. Rath, et al., "*IEA PVPS Task 13-ST2.5: PLR Determination Benchmark Study*," Case Western Reserve University, 30-Aug-2020 [Online]. Available: https://osf.io/vtr2s/.

Methodology comparison

PVPS

Initial YA and average yield

The use of PV module degradation (-0.25%/y) instead of typical Performance Loss Rates (PLR) can underestimate the losses over time (PLR = -0.88%/y)

PVPS

Comparison of LTYPs

Bolzano

Alice Springs

Measured values are averaged (rolling average)

Economic impact on business model and LCOE

eurac research

NET BILLING

Economic impact on business model and LCOE

Scenario 1) P50 = 1095 kWh/m², 1a) PLR = 0.25 %/y, 1b) PLR = 0.5 %/y

Scenario 2) P50 = 1406 kWh/m², 2a) PLR = 0.25 %/y, 2b) PLR = 0.5 %/y

		1095 / -0.5%	1406 / -0.25%
Free cashflow (EBIDTA) IRR by CAPEX	[%]	4.7%	7.9%
Unleveraged IRR after tax and depreciation by CAPEX	[%]	3.9%	6.6%
LCOE in total	[EUR/M Wh]	36.9	27.9

VPS

eurac

research

PPA

BEST PRACTICE AND GUIDELINES

PVPS

Possible issue:	Best practice
Estimation of correct site insolation	Check various sources of satellite data Ask satellite data provider for validated data with ground measurements Apply site adaptation
Long-term trend	Check the trend over different time-periods (.e.g 2011-2020, 2001- 2010)
Transposition of GHI to GTI	Check in the literature which is the best combination of decomposition and transposition models for the specific climate Check for consistency in the % contribution by using various irradiance sources
Parameterization of components (PV Modules, Inverters)	Check reliability of provided files, ask manufacturer for qualified data (e.g. independent PAN Files)
Shading	In case of far shading check the sensitivity of the yield on different hourly profiles
Soiling	In case of measurements, evaluate non-uniformity over the selected site
Temperature effects	Check various sources of satellite data Ask satellite data provider for validated data with ground measurements
Performance Loss Rates	Make sure that one includes not only module degradation and that also unavailability and reversible failures are considered
Calculation of uncertainty	Use semi-empirical calculation methods if long-term data is available and distribution deviates from normal (gaussian)
O&M costs in business models	Based the assumptions on real cost data and not on a % of CAPEX

Uncertainties in Yield Assessments and PV LCOE

Ġ

- We moved forward from the uncertainty framework to real implementations of it and the impact that uncertainties can have on lifetime yield predictions, on the LCOE and on the cash flow.
- The most important parameter influencing the energy yield assessment is the site-specific irradiation.
- YA is not only about the software used, it is mainly about the user (personal experience, assumptions).
- Seven highly skilled specialists did not arrive at the same result in the two benchmarking exercises
- From an industry perspective, it would be beneficial if more "live" post-mortem analyses (i.e. comparison of the LTYP and measured data, every 5 years of system life) would be made and published.

Figure 26: Post-mortem analysis

Next phase: Impact of decisions

23

iea-pvs.org

Thank you for your attention

David Moser david.moser@eurac.edu

