

Stavros-Andreas Logothetis¹, Vasileios Salamalikis¹, Stefan Wilbert², Jan Remund³, Luis F. Zarzalejo⁴, Yu Xie⁵, Bijan Nouri², Evangelos Ntavelis⁶, Julien Nou⁷, Niels Hendrikx⁸ Lennard Visser⁸, Manajit Sengupta⁵, Mário Pó⁹, Remi Chauvin¹⁰, Stephane Grieu¹¹, Wilfried van Sark⁸, Andreas Kazantzidis¹

¹ Laboratory of Atmospheric Physics, Physics Department, University of Patras.
² German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería 73, 04001 Almería, Spain.
³ Meteotest, 3012 Bern, Switzerland.
⁴ CIEMAT Energy Department–Renewable Energy Division, Av. Complutense 40, 28040 Madrid, Spain.
⁵ National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
⁶ CSEM Center Alpnach, 6055 Alpnach Dorf, Switzerland
⁷ PROMES-CNRS, Rambla de la thermodynamique, 66100 Perpignan, France
⁸ Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8, 3584 CB Utrecht, the Netherlands
⁹ EKO INSTRUMENTS Europe B.V., 2521 AL Den Haag, the Netherlands
¹⁰ PROMECA Ingénierie, 1 rue des Iles, 38420 Domène, France
¹¹ Université de Perpignan/PROMES Laboratory of Processes, Materials and Solar Energy, Rambla de la Thermodynamique, 66100 Perpignan, France.

email: <u>akaza@upatras.gr</u>

- 1) to qualify the current state-of-the-art of ASI-based solar nowcasting
- 2) to identify the strengths and the weaknesses of the implemented algorithms
- 3) to evaluate the effect of various cloud conditions and time horizons on ASI-based nowcast performance
- 4) to investigate the performance of the ASI-based GHI nowcasts against typical reference forecast models
- 5) To investigate the role of ASI-based solar irradiance nowcasts in ramp event detection

Publications					
	Benchmarking of solar irradiance nowcast performance derived from all-sky imagers		Solar irradiance ramp forecasting based on all-sky imagers		
aper 1	Volume 197 September 2022 ISSN 0960-1481	aper 2	energies		
P	Renewable Energy AN INTERNATIONAL JOURNAL	d	MDPI		

Details of the campaign days and measurements

GHI nowcast systems

1) All Sky Imagers (ASI):

Sd/

4 camera setups, 5 nowcasting methods.

2) Persistence Model and Physical-based Smart Persistence for Intra-hour forecasting of solar radiation (PSPI) model

*****Time horizon = Forecasts up to 20 min

Experimental setup at METAS at CIEMAT's PSA

Cloud clustering of campaign days

All campaign days were flagged in the following 6 cloud			
classes:			
1: Cloud-free (or almost cloud-free)			
Scattered/broken cloudiness with:			
2L: Low clouds 2M: Multiple clouds 2H: High/Middle			
clouds			
3H: Scattered/broken cloudiness with High/Middle clouds			

during half of the day, cloud-free during the other half.

4A: Overcast cloud conditions during half of the day, scattered/broken cloudiness during the other half

ASI2 algorithm performance under different time horizons and intervals ۲

Paper 1: Results (2)

PVPS

• Bar plots showing the overall MAE and RMSE for each ASI algorithm under the 6 different cloud clusters.

Summary of the algorithms with the **best performance** for each cloud cluster.

	Cloud Cluster					
	1	2L	2M	2H	3H	4 A
Metric						
MAE	PSPI	ASI2	ASI2	ASI1	ASI2	ASI2
RMSE	ASI2	ASI5	ASI2	ASI2	ASI2	ASI3

Paper 1: Results (3)

PVPS

• RMSE under the 6 different cloud clusters and forecast lead time.

Paper 1: Results (4)

• Diurnal variability for the performance of ASIs at a typical 2L day.

• Possible cases

		Observed Ramp Events		
		Ramp	No-Ramp	
Events	Ramp True Ramp (TR)		False Ramp (FR)	
Ramp 1	No-Ramp	False No-Ramp (FNR)	True No-Ramp (TNR)	

• Temporal analysis of ramp event detection

 At each specific time horizon (from 1 to 20 min)
Over the whole 20-min time horizon (Time window, TW, analysis)

• Metrics

Total Accuracy -	True cases	TR + TNR		
Total Accuracy –	Total cases	TR + FR + FNR + TNR		

Paper 2: Results (2)

PVPS

ASIs performance at each time horizon D

Paper 2: Results (3)

PVPS

ASIs performance at each time horizon D

Paper 2: Results (4)

ASIs performance at specific cloud conditions for the TW analysis ٠

Within the whole validation period:

- ASIs 1-2 reported the **lowest** deviations among the ASIs (from -0.39% to 0.95%).
- In general, ASIs deviations follow an **increasing trend** as the **time horizon increases**, with ASI1 and 2 revealing the highest forecast accuracy either at low (<5 min) or at distant (>15 min) lead times.

Under specific cloud conditions:

- ASI1 and 2 **outperform** the persistence models at **all** cloud clusters and lead times.
- For time horizons longer than 5 min, the other 3 ASIs (3-5) are also efficient to **outperform** the persistence model **under cloudy skies**.

Under cloud-free conditions:

• Three ASIs (1-3) proved to be capable of providing **better** results than persistence.

Overall conclusion

• Specific ASIs outperform the persistence models even under clear, scattered, and overcast skies.

The performance of the detected ramp event is connected to the applied forecast algorithms.

- The true predicted ramp event cases for all ASIs decrease as the time horizon increases.
- The ASI1 and ASI2, tend to wrongly record no-ramp events more often than ASI 3-5 systems.
- The ASI 3-5 show the tendency to wrongly predict ramp events which happens less often for ASI1 and ASI2.
- They can predict ramp events accurately from 30% to 95% of the cases.

Overall conclusion

• The selection of the most suitable ASI system for solar irradiance ramp event nowcasting depends on the application.

Thank you for your attention!

Paper 2: Methodology

PVPS

• Flowchart of the applied methodology

Paper 2: Results (1)

PVPS

• ASIs performance at each time horizon D

Persistence 100% * Possible cases (100%) **80% 60% 40%** 20% 0% 9 11 13 15 17 19 TW 1 3 5 7 Time Horizon (D) **FNR** TR FR TNR

Note: Typical reference forecast model (Persistence) cannot predict any ramp event

Paper 2: Verification

• Verification of the applied methodology at a specific time horizon.

